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The nonlinear Boltzmann equation has been solved for shock waves in a gas of
elastic spheres. The solutions were made possible by the use of Nordsieck’s
Monte Carlo method of evaluation of the collision integral in the equation.
Accurate solutions were obtained by the same numerical procedure for eight
values of the upstream Mach numbers M, ranging from 1-1 to 10, even though
the corresponding degree of departure from equilibrium varies by a factor
greater than 100. Many more characteristics of the internal structure of the shock
waves have been calculated from the solutions than have hitherto been avail-
able. Fach solution of the Boltzmann equation requires about 10® multiplications
to obtain statistical errors of 3 %, in values of the velocity distribution funetion
and collision integral and much smaller errors in the moments of these functions.

The reciprocal shock thickness is in agreement with that of the Mott-Smith
shock (w2 moment) from M, = 2-5-8. The density profile is asymmetric with
an upstream relaxation rate (measured as density change per mean free path)
approximately twice as large as the downstream value for weak shocks and
equal to the downstream value for strong shocks. The temperature density rela-
tion is in agreement with that of the Navier—Stokes shocks for Mach numbers in
the range 1-1-1-56. The Boltzmann reciprocal shock thickness is smaller than
the Navier-Stokes value in this range of Mach number because the viscosity—
temperature relation computed is not constant as predicted by the linearized
theory.

The velocity moments of the distribution function are, like the Mott-Smith
shock, approximately linear with respect to the number density; however, the
deviations from linearity are statistically significant. Four functionals of the
distribution function that are discussed show maxima within the shock. The
entropy is a good approximation to the Boltzmann function for all M,. The
solutions obtained satisfy the Boltzmann theorem for all Mach numbers. The
ratio of total heat flux ¢ to g, (that associated with the longitudinal degree of
freedom) correlates well with local Mach number for all }, in accordance with a
relation derived by Baganoff & Nathenson (1970). The Chapman-Enskog
linearized theory predicts that this ratio is constant. The (effective) transport
coefficients are larger than the Chapman—Enskog equivalents by as much as a
factor of three at the mid-shock position.

At M, =4, and for 409, of the velocity bins, the distribution function is different
from the corresponding Mott-Smith value by more than three times the 909,
confidence limit. The r.m.s. value of the percentage difference in distribution
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functions is 15 %, for this Mach number. At M, = 1-59, the half width and several
other characteristics of the function

J. fdv,dv,

differ from that of the Chapman-Enskog first iterate, and many of the devia-
tions are in agreement with an experiment by Muntz & Harnett (1970).

1. Introduction

A shock wave is a commonly occurring, well-defined, non-equilibrium pheno-
menon in gasdynamics. It is therefore desirable to be able to determine any of
its properties that are currently of physical interest and to be able to determine
others as they are needed in the future. Unfortunately, experiment yields only
a few properties of shock waves and, until recently, calculations of the structure
of strong shocks have been based upon assumptions whose validity has not been
established.

Nordsieck’s development, more than a decade ago, of an accurate Monte Carlo
method of evaluation of the collision integral in the nonlinear Boltzmann equa-
tion radically altered this situation, both for shock wave calculations and for
other problems in rarefied gasdynamics. No longer is it necessary to assume
near-equilibrium or nearly free-molecule flow, nor to assume the validity of
equations substituted for the full nonlinear Boltzmann equation. Nordsieck’s
evaluation of the collision term (gain and loss terms separately) makes possible
direct solutiont of this basic equation, a possibility that has been largely ignored
in the century since the equation was derived by Boltzmann.

Nordsieck’s method was developed in 1958 and was first described in the
literature in 1967 (Nordsieck & Hicks 1967). Brief accounts of the application
of the method to strong shock waves have appeared there and in the Proceedings
of the Sixth Rarefied Gas Dynamics Symposium (Hicks & Yen 1969). Applications
to other problems have also been made (Hicks 1965; Yen & Hicks 19674, b;
Yen 1971; Yen & Schmidt 1969). Part of an extensive analysis of the systematic
and random errors of the method and its applications was published in Hicks &
Smith (1968). More recent analyses of the errors and improvements of the method
have been described in a report (Hicks, Yen & Reilly 1969).

Using Monte Carlo evaluation of the nonlinear collision integrals, during the
period 1967-70 we solved the nonlinear Boltzmann equation for shock waves
in a gas of elastic spheres. We used the same numerical methods for eight Mach

1 By solution of the Boltzmann equation we mean calculation and line-printer output
of (i) accurate numerical values of the velocity distribution function f(v,z) for each of
226 cells in velocity space and for each of 9—17 positions in the shock wave, and (ii) estimates
of the probable (statistical) error of each of these values of f(V, z), of each of the corresponding
values of the gain and loss terms in the collision integral @ — bf and of each of some 100 func-
tions derived from f, a and bf. These functions include all the functions that are often re-
garded as ‘ solutions’ of the Boltzmann equation. By the adjective accurate we imply that
the probable errors in f(v,x) are about 3%, on the average. These matters have been dis-
cussed in some detail in Hicks & Smith (1967, 1968) and Hicks et al. (1969).
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numbers in the range 1-1-10. In the present paper we describe selected results
from these calculations.

There are several reasons for publishing only selected results of these shock
wave calculations, the most obvious being the large volume of results, larger
than it is possible to print in a journal. Furthermore, no definitive comparisons
with experimental results are possible until a new theory that predicts the
effects upon the collision integral of changing the intermolecular forces is de-
veloped or until differential cross-sections for realistic, slightly ‘soft’ molecular
fields are known. It is also impossible to predict exactly which detailed computed
properties of shock structure will be needed in the future to compare with other
calculations and with experiment. However, using our basic Boltzmann program,
which solves the Boltzmann equation accurately, and the AVERR program,
which gives detailed information about moments and functions derived from
them, we can relatively easily calculate the specific details of shock structure
when they are needed.

For these reasons we have chosen to describe here those characteristics of
shock waves having the greatest physical interest at present. These charac-
teristics are named in the section headings. With one exception (§ 2) we discuss
first those characteristics which are most commonly treated in gasdynamics,
namely, shock thickness and density gradients. We then discuss progressively
less familiar characteristics: thermodynamic properties, gradients of temperature
and of the Boltzmann flux, transport properties (including two components of
heat flux), the distribution function and the collision integral itself.

It is useful to preface our discussion of these characteristics with general
remarks on our methods. For a number of reasons (see Hicks & Smith 1967)
we find it desirable to use the local particle density n as the independent variable
rather than z, the position co-ordinate. Except in § 3, then, we consider variations
of the different shock properties as functions of » rather than of . We often use
dimensionless variables like # = (n—mn,)/(ny—n,).

The solutions we discuss are iterative solutions of the Boltzmann difference
equation, which we have reason to believe approximate well the solutions of the
differential equation (Hicks & Smith 1967, 1968). The difference equation is solved
byembedding Nordsieck’s Monte Carlo method of evaluating the collision integral
in an iterative scheme for finding velocity distribution functions (everywhere in
the shock wave and at all positions in velocity space) which produces two sides of
the Boltzmann equation that are equal within about 1%,. We have studied the con-
vergence of the iterative scheme and made strong uniqueness tests of our solutions.
The results of weaker tests have already been published (Hicks & Smith 1968).

The units used are the values, denoted by the subscript 1, of various properties
of the upstream gas. Thus n, and ¢, are the units of number density » and
temperature ¢, the unit of length I, = 1/(27n,0?) = (mean free path),/y/2 and the
unit velocity ¢, = (27kt,/m)t = (mean speed), x 377. The unit of time is therefore
(mean free time), x (2/m)} and the unit of the velocity distribution function is
ny/c. In these units the Boltzmann equation for the shock wave is

0,0 /6w = a—bf = f (FF' —ff") [k.v,| dv'(dk/4m),
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where f = f(v,x) is the velocity distribution function, z is the distance in the
direction perpendicular to the shock, the unit vector k gives the direction of the
line of centres during a collision, v, = v'—v and f, f’, F and ¥’ denote the four
values of f corresponding to the four velocities v, v/, V and V. Integration is over
the whole 477 solid angle in order that the k integration limits may be independent
of v and v'. The term bf reminds us that this second part of the collision integral
is proportional to f(v,z), a fact of importance in devising a stable method of
integrating the differential equation.

In all calculations we used 226 bins in the (v,, v, ) velocity space, where v, and
v, are components in cylindrical co-ordinates. For this subdivision of velocity
space it is possible to make meaningful calculations up to a Mach number
M, = 10 but not much higher. We used the LS and the MB corrections and the
‘single sample’ technique (Hicks et al. 1969) throughout the calculations in the
entire M, range of 1-1-10. For each J{;, runs were made for each of four large
independent collision samples (213 collisions per sample), yielding estimates of
the mean value and the statistical error of any quantity derived from either the
velocity distribution functions or the collision integrals. The r.m.s. probable
errors of the (mean) velocity distribution function, calculated by our solution
of the Boltzmann equation, were determined for each Mach number and are
about 3 9, for a Mach number of 4. The probable errors in various (mean) moments
of the velocity distribution and of the collision integral are smaller by factors of
ten to one hundred. This level of accuracy is obtained on the CDC 1604 digital
computer (50 us multiplication time) in a run lasting about 2h for each Mach
number (equivalent to 1-4 x 108 multiplications). Calculations of each value of
a or bf, that is, each value of a fivefold integral, requires only the time for about
2000 multiplications per iteration.

The values of the mean and the statistical error of each function derived from
the velocity distribution function or the collision integral is calculated by the
AVERR program. This program computes the means and errors of 100 functions
for each set of four collision samples, for each position in the shock and for each
value of the Mach number. We discuss seventeen of these functions in later
sections of the paper.

The overall method is summarized in figure 1. As shown in this figure, thermo-
dynamic properties and transport properties of shock waves are calculated from
the moments of the distribution function, gradients from the moments of the
collision integrals, and transport coefficients from both types of moments. One
moment of f, namely n, the number density, is taken to be the independent
variable in most sections of the paper.

We have tested the accuracy of the Mott-Smith solutions in satisfying the
Boltzmann equation and have found that our Monte Carlo solutions satisfy the
Boltzmann equation more accurately by a factor of 100. Since we know the
magnitudes of the random errors of our solutions we can state unequivocally,
in the comparison with the Mott-Smith solution, which differences may be
significant and which are not. The comparison with the Mott-Smith results is of
interest because we have found that the qualitative features of the Mott-Smith
velocity distribution functions are correct and that some of the Mott-Smith
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F1gurE 1. Overall method of computation of shock wave properties from the solution of
the Boltzmann equation. z is the co-ordinate perpendicular to the plane of the shock,
M . is the kth moment of f, d.# ,/dx the kth moment of df/dx, T, the reciprocal shock thick-
ness, H the Boltzmann function, » = H/n,t, thelateral temperature, ¢, the total temperature,
¢ the heat flux, 7 the stress, g the viscosity coefficient and k the thermal conductivity.

moments give surprisingly good accuracy despite the error in the distribution
function itself.} Also, since many other proposed shock wave models have been
compared with the Mott-Smith shock, the difference between our Monte Carlo
solutions of the Boltzmann equation and these models could also be easily
computed. .

Bird (1965, 1967, 1970a) used a direct simulation technique to obtain shock
wave solutions. He offered a proof (Bird 197056) that his procedure can be related
to the Boltzmann equation and concluded that the results obtained constitute
a solution of the Boltzmann equation. He computed the density profile in shock
waves of the gas of elastic spheres for Mach numbers ranging from 1-5 to 30
(Bird 1965) and obtained the results on temperatures (for Mach numbers of
1-5, 3 and 10) and velocity distribution functions (for Mach number of 10) based
on the longitudinal and lateral velocity components (Bird 1967). His more
accurate calculations given in his recent paper (Bird 19704) include those of the
density profile, the reciprocal shock thickness and several higher moments of
the distribution function. In addition the velocity distribution function is
illustrated for MM, = 8 by computer display photographs with the molecules
represented as dots in the two-dimensional velocity space. Higher order moments
were given for a shock wave of M, = 8 in a gas of inverse twelfth power molecules.
Comparison has been made with the Mott-Smith and the Navier—Stokes shocks.
We shall make several comparisons with his 1970 calculations.

1 It is therefore clear that it would not be possible to establish the accuracy of any pro-
posed solution f(v,z) solely on the basis of a few moments of the distribution function.
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2. Measures of departure from equilibrium

Shock waves are interesting phenomena in rarefied gasdynamics because their
interiors exhibit large departures from thermal equilibrium. It is therefore
appropriate to discuss measures of this departure before discussing other aspects
of shock waves. A monatomic gas is in a state of thermal equilibrium if it has
a Maxwell-Boltzmann velocity distribution function. One measure, then, of
the departure of a gas from thermal equilibrium is the deviation of its velocity
distribution function f(v) (obtained by solution of the Boltzmann equation) from
the Maxwell-Boltzmann form. We may write the deviation as

Of = f—fea, (1)
where feq is a Maxwell-Boltzmann function that corresponds to the same values
of density n, gas velocity « and temperature (or total energy) ¢. Since the Krook
model of the collision integral is proportional to df this measure is essentially
just the Krook collision integral. (The function f is not, in general, a solution of
the Krook equation.)

A monatomic gas is also known to be in a state of thermal equilibrium if the
Boltzmann collision integral vanishes. Thus a second measure of the departure
from thermal equilibrium is the deviation of the collision integral from zero.
We write this in fractional form as

&y = (@—bf)fa = 1— (bf/a), ()
where each of the quantities @, bf and dy is a function of v.

In certain circumstances we are interested in the variation of df and of dy
throughout velocity space. Usually, however, we would use more global measures
of departure from equilibrium, which we obtain by integrating (or summing or
bounding) 8f, a —bf, or &y over the velocity space. Some useful global measures
are the following: (i) r.m.s. values of df, (i) r.m.s. values of dy or of related func-
tions, (iii) maximum values of 8y, (iv) heat flux ¢ and stress 7 and other properties
which can be calculated from moments of f, (v) moments of a —bf. Our calcula-
tions yield values of each of these measures of departure from equilibrium, but
we shall discuss just three of them, the second one in this section, the fourth one
in §§ 4-6, and the fifth one in §§3 and 5.

In our studies of the relative departure from equilibrium we have found it
convenient to use a certain function of &y or of the ratio a/bf. This function is

Ylafpf) = (a—bf)/(a+bf) = dy[(2—8y). (3)

Its value runs from — 1 (for a/bf = 0) to + 1 (for bf/a = 0); for a gas in equilibrium
its value is zero. The global measure of departure from equilibrium that we use
is the r.m.s. value of ¥(a/bf) over velocity space, which we call y,,. The values of
Y 4, for different Mach numbers and different positions in the shock waves, gives
us one measure of the local departure of the gas from thermal equilibrium.
Figure 2 summarizes the degree of departure from thermal equilibrium at three
positions in shock waves for Mach numbers ranging from 1-1 to 10. We notice
first the very large range of values of i, from 1-3 x 102 near the hot side
(f = §) of the weakest shock (M, = 1-1) to 0-32 near the cold side (2 = }) of the
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F1oUurE 2. Maximura departure from thermal equilibrium in weak and strong shock waves.
M, = Mach number, @ — bf = collision integral, A = (n—n,)/(n,—n,), ¥z = r.m.s. value of

(a—bf)/(a+0f).

strongest shock (M; = 10). These two values of i correspond, roughly, to values
of |8y| equal to 3 x 10~ and 0-5, respectively. Our development of Nordsieck’s
method of evaluation of the collision integral makes possible solutionst of the Boltz-
mann equation over this very wide range of non-equilibrium conditions.

A second characteristic of the curves in figure 2 is noteworthy: for Mach
numbers larger than about 1-2 the departure from equilibrium, as measured by
Y ap, 18 larger near the cold side (% = ) than in the centre of the shock (% = }).
Inspection of the isolines of ¥, show that the origin of this effect lies in the large
values of |¢/| (or of bf/a) for negative values of v,, that is, corresponding to the mole-
cules which are moving upstream relative to the shock and are being (rapidly)
produced by the collisions. This non-equilibrium phenomenon, due to ‘diffusion’
of such high-speed molecules backwards or towards the cold side of a shock wave
or other rarefied gas flow, has provoked the interest of researchers for many years.

3. Shock thickness and density gradients

As noted in § 1, we shall use » rather than x as the independent variable in
giving a detailed discussion of shock structure. The present section will be
concerned with the relationship between » and z. Discussion of this relation will
show the nature of the z — n transformation and will also exhibit characteristics

1 In the same sense as defined in § 1.
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Fioure 3. Variation of reciprocal shock thickness with Mach number M,. Q, Boltzmann,
showing probable error. (a) Weak shocks; , Navier—Stokes. (b) Strong shocks; —,
Mott-Smith (%2 moment equation).

of the density profile in the shock waves. A comparison of Boltzmann and Navier-
Stokes density gradients, for M, = 1-2, will be given in § 7. The density profiles we
obtained from the Boltzmann solutions are not symmetrical, but the asymmetry
isnoteasy to see in an nws. x plot. Also the choice of origin is arbitrary, which makes
objective comparison among n—x curves from various sources rather difficult.
Plotting dn/dx vs. # (density gradient profile) removes both these difficulties.

Just one characteristic of the density profile (or of the density gradient profile)
is usually used to represent shock structure, namely, the reciprocal shock thick-
ness 7},. It is also the characteristic most commonly determined by experiment.
In defining 7}, we first introduce the reduced density

= (n—ny)[(ng—ny), (4)
which ranges from 0 on the cold side (n = 1) to 1 on the hot side (n = n,). This
reduced density gradient d7/dx has a maximum value [dR/dx]max Somewhere
within the shock, and we definet

T, = \J2(d7[dx)max. (5)

(The unit of 7}, here is the upstream mean free path, not the Nordsieck unit of
length.)

Our solutions of the Boltzmann equation for shock waves in a gas of elastic

spheres lead to the values of 7}, given in figures 3 (@) and (b). We should point out
that these values of 7}, were evaluated from the moment of the collision integral

n' = dnfdx = f(a—bf) v/,

t To be more specific we might call this the (density) reciprocal shock thicknesses to sug-
gest that T, based on the profiles of other gas properties is different from 7', for density.
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not from the n-x curve. As shown in figure 3(a), the 7}, values for low Mach
numbers are smaller than the corresponding Navier—Stokes results.t Since the
characteristics of the Navier-Stokes shock can be described by the #=n curve
and the transport coefficients together with the n— curve, the interpretation of
our comparative results for low Mach numbers will be made in § 7, in which the
results for df/dn and the transport coefficients are presented. However, we do
want to point out here that the variation of properties with respect to the
number density » in a Navier—Stokes shock depends on the integral curve, i.e.
on the t—n relation and thus on the Prandtl number, while the determina-
tion of the variation with respect to « requires, in addition, the u—t relation.
Talbot & Sherman (1959) studied 7., at low Mach numbers. They measured the
temperature profile for M; = 1:335-1-713 and obtained density (or velocity) shock
thicknesses (by using the theoretical t—n relation) that agree with Navier—Stokes
shocks.

For values of M, > 2-5, as shown in figure 3 (b), we compare values of 7, only
with the results (using the 42 moment) of Mott-Smith (1951). The Boltzmann
and Mott-Smith values agree within the 909, confidence limits.} The fact that
the Boltzmann 7], curve and the Mott-Smith 7}, curve are not far apart, for
intermediate values of the Mach number, does not imply that other shock
characteristics calculated from the Boltzmann and Mott-Smith shocks are also
in approximate agreement. We shall, in fact, make many other comparisons of
the two shocks later in this paper.

The reciprocal shock thickness, of course, shows only one characteristic of the
density profile.§ It tells us nothing about the physically interesting relaxation
rates in the wings of the shock nor about the asymmetry of the density gradient
profiles. The degree of asymmetry of the profiles is exhibited directly in plots
of our calculated values of dn/dx vs. %, see figure 4. The density profiles, if needed,
can be calculated by numerical integration:

f
2(R) = f (d|dR) dh.
=}

We remark first that the four curves for each individual Monte Carle sample
are smooth and of similar shape (i.e. the four curves are ‘nested’). It is therefore
permissible to make a somewhat more detailed analysis of the shape of the
(average) density gradient curves than would be justified by the values of €5
shown in figure 4.

Comparison of ordinates for symmetrically placed values of # affords one
test of asymmetry. On this basis we see that the gradient curves are asymmetric
for all Mach numbers except those near M, = 2-5. The asymmetry produces

t+ The T, curve for Navier—Stokes for M; = 1-2 is obtained from calculations of the
algebraic theory (Hicks & Yen 1967). This curve deviates, on the average, by 1-6 9, from
Wang-Chang’s (1948) result for M, = 1-1-2, by 3-8 %, from Grad’s (1852) result for M, = 1-2,
and by less than 1 9, from Schmidt’s (1965) numerical results for M, = 1-2--2.

1 The 909, confidence limit €,y = 3-07¢5,, where €5, = probable errors which are given
in most figures.

§ Grad (1952) suggested a definition of the shock thickness based on the integral properties
of the profile.
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larger upstream than downstream gradients for M, < 2-5 and smaller up-
stream than downstream gradients for M; > 2-5. These qualitative results for
high Mach numbers were anticipated in our algebraic theory (Hicks & Yen
1967).

We can connect the asymmetry within the shock to the density relaxation
rates in the shock wings by generalizing part of the Mott-Smith Ansatz. Thus
we assume that as x - —o0

© © dasjdi ~ a R, (6)

and as ¢ > +0 dxjdi ~ ay[(1—7). (N

The same relation, with a, = a,, follows directly from the linear dependence of
f on % in Mott-Smith’s Ansatz. A simple form for the ## dependence of dx/d# that
satisfies both these conditions is

dx a, a, a,+(ay—a,) R

R P S T (U B ®
The linear expression @, + (@, — @,) 7 is thus a correction factor for the symmetric
function 7(1 —#). For a, > a, (slower relaxation per unit path downstream than
upstream) the gradient curves are skewed to the left, while for a, < @, (faster
relaxation downstream than upstream) the gradient curves are skewed to the
right. By applying these results to figures 4(a) and (b), we see qualitatively that
for M, < 2-5 the upstream relaxation rate must be greater than the downstream
rate, and that the reverse is true for M, > 2-5.
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M, ﬁ1 ﬁz Agp
1-1 0-088 0-053 0-044
1-2 0176 0:105 0-088
1-56 0-40 0-29 0-24
25 0-62 0-69 0-49
4-0 0-70 1-00 0-76
6.0 0-74 1-37 0-96
80 074 1-85 1-08
10-0 0-74 2:3 1-18

TaBLE 1. Parameters of the density profile in Boltzmann shock waves (elastic spheres).

The new Ansatz describes our data qualitatively but not quantitatively. To
represent the Monte Carlo results within the tolerance given by the 909, limits
we modify it again, assuming now that

B = [R(1 - R)] (dR)dx) = [m+ABﬁ(1—ﬁ)]. (9)
The quantity Breduces to the asymptotic relaxation rates B, = a7 and B, =a3!
in the wings.

Equation (9) was fitted to the data of figure 4. In the wings (? < {% or # > 12
the values of [B—Ag7(1—#)]~! computed from the solution of the Boltzmann
equation show large deviations above and below the values @, + (a,—a,) 7. In
the intermediate range (% < # < 1£) the two sides of the equation agree to
within less than the 90 %, confidence limits of the left-hand side.

The resulting values of B;, B,and Az are shown in table 1. The three coefficients
are each proportional to (M, — 1) for M, < 1-56. The relaxation rate B, is propor-
tional to M, for M, > about 7. The relaxation rate B, seem to approach an asymp-
totic value of about 0-7 as M; — 10. The two rates appear to be equal for M; ~ 2-1,
in agreement with our earlier qualitative conclusion.

We emphasize that the values of Bl, B, and Ay in table 1 are tentative. When
used in (9) they describe our present Monte Carlo results. However, the strong
evidence for asymmetry and the estimates made of the magnitude of the re-
laxation rates in the wings will, we hope, stimulate further experimental and
theoretical studies of the density gradient profiles of shock waves.

Shock wave theories for low Mach numbers describe B by various functions
of #. For example, B for Grad’s thirteen-moment shock is a linear function of #
with positive coefficients. The fact that the asymmetry for this shock is to the
right is obvious; however, the relaxation rate in the wings cannot be explicitly
determined. As the Mach number approaches one, the density profile becomes
symmetric for all shock wave theories for low Mach numbers; therefore, each
first-order theory for very low Mach numbers gives a constant value of B.

Schmidt (1969) introduced a measure of the asymmetry of the density profile
which in our notation and independent variable 7% has the following expression:

foae g [l 1=R
=], dﬁ/dxd”/fﬁmdﬁ/dxd"’ (10)
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where fimax = the reduced number density for maximum density gradient. Com-
bining (9) and (10) and using the values of B given in table 1, we have computed
the ratio @ for M, = 2-5, 4, 6, 8 and 10 and compared the values obtained with the
results obtained from Schmidt’s experiment for argon in this range of Mach
number. As shown in figure 5, our values of § are much larger than those of
Schmidt and the difference increases as M, increases. We should also like to
point out that our solutions would yield values of ¢ smaller than 1 for Mach
numbers lower than about 2-2, indicating that the peak of the density profile
moves to the cold side of the shock wave.

4. Shock properties as functions of Mach number

In §§4-6 we shall discuss a number of functions derived from our solution of
the Boltzmann equation for shock waves. In preparation for this discussion we
shall now define a number of properties which are derived from the velocity
distribution function f(v,x). We shall then describe the behaviour, as functions
of M,, of certain of these properties, especially those which possess extrema within
the shock waves.

From six moments of the velocity distribution function f we can calculate all
the ordinary macroscopic properties of the non-equilibrium gas. The six moments
are n = .#,, and .#,, s, My, Mg and M, where

A, =ff<1>kdv, (11)

and D, =1, O;=02 Qg=13,
— — 2 — m2
D, =v,, O,=1v,02 Oy=12,

The moments .#,, .#, and .#, are the invariants.

Our calculations show that each of five moments of f (.#;, .#, and three higher
moments) is nearly a linear function of n, that is, f and its moments are rather
similar to the Mott-Smith f and its moments, which are exactly linear functions
of n. The maximum deviations from linearity amount to — 0-59 and 1-8 %, for
the moments .#; and .#,, for example, for M, = 2-5 (Hicks & Smith 1967). The
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Monte Carlo fluctuations are much smaller than these deviations. Rather than
showing, in this section, the detailed variation of the moments .#; and .4,
with %, we shall instead discuss the characteristics of the derivatives of various
related quantities in §§5 and 6.

The reduced dimensionless properties derived from some of the six moments
are as follows.

Gas velocity u = Myln. (12)
Lateral temperature ¢, = m.#y[n. (13)
Stress T = En(t, —1t,). (14)
Total heat flux q = (2m.My | M,)— 3t,— 2t, — 2mu?. (15)
Longitudinal heat flux ¢, = (27 4/ #,)— 3¢, — 2mu?. (16)

In accordance with our definition of units, the units of the dimensional quantities
(corresponding to the dimensionless quantities u, {, 7 and g) are, respectively,
Uy, £y, Py and 43,

To calculate the gas temperature ¢ we need t,, the longitudinal temperature,
but this is a funetion of » which can be derived explicitly from the first two
conservation equations (Yen 1966):

t, = 2n[ — u?+ (My[n)]. 1

The temperature and pressure of the ‘reference gas’ are then given by
b=t + 30, (18)
p=mni (19)

Knowing » and t we can calculate any thermodynamic property of the equilibrium
reference gas, such as the entropy 8 per unit volume, for example:
8 = nflog (nt~4) - §). (20)

The foregoing discussion shows that f, occupies a special place in shock theory.
Unlike ¢, its dependence on n cannot be derived from conservation equations
but must be calculated from a solution f of the Boltzmann equation for the
shock and subsequent calculation of .#/n by numerical integration. However,
oncet, (n) is known, the temperature ¢ and the properties 7 and ¢ can be computed
as functions of n from (11)—(18). The variation of ¢, with 7 is represented (in-
directly) in § 5 by the variation of df/d% with #.

There are two other important macroscopic properties of the non-equilibrium
gas: the two Boltzmann functions

H =fflogfdv, en

and G = fvzflogfdv. (22)

These are seldom discussed because their calculation requires knowledge of the
velocity distribution function (which can only be calculated accurately by our
method for gases that are far from equilibrium) and because the integrations must
then be performed by quadrature.

7 FLM 53
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The Boltzmann theorem for a steady-state flow, as in a shock wave, says that
G must decrease monotonically through the shock. We shall make a sensitive test
of the conformity of our results to this theorem in § 5. We shall see shortly that H
(and the related function » = H/n)also possess certain other interesting properties
in shock waves.

With these preliminaries out of the way we shall now discuss four properties,
each a functional of f and each exhibiting a maximum within the shock waves.

It was noticed many years ago (by Nordsieck in 1959, by Hicks in 1963, see
Yen (1966)) that the longitudinal temperature ¢, as a function of # in the shock
(equation (17)), possesses a maximum for M? > 1-8. According to the results of
our Boltzmann calculations the lateral temperature ¢, does not show a maximum
for any Mach number or position in the shock. The existence of a maximum of
t, thus ensures that for M2% > 1-8 the temperatures are not in equlibrium.

The total temperature b, = £+ Br(Myfn)?. (23)
Its variation thus depends on two moments, .4, and .#,. We have found that it
has a maximum for all the Mach numbers studied. As is shown in figure 6, this
maximum is less than 1-085, and the maximum #, obtained by Bird (1970«) for
M, = 8 and a gas obeying the twelfth-power law (force ~ r—, where v = 12,
r = distance of colliding molecules) is larger than our calculation for elastic
spheres at this Mach number.

For weak shocks, the Boltzmann function per unit volume (H) and the en-
tropy per unit volume (S) are nearly equal. For strong shocks, the difference
between the two functions is thus a global measure of departure from thermal
equilibrium (see also §2). At the upstream and downstream boundaries the two
functions are exactly equal, so that the difference must possess an extremum
inside the shock. The difference (A — S) is plotted in figure 7 for the mid-shock
position to show its general behaviour as a function of M.

It was also noticed some time ago (Morduchow & Libby 1962) that the value
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of s, the entropy per molecule, calculated from the Navier—Stokes description of
a shock wave possesses a maximum within the shock wave for all Mach numbers.
The maximum is caused by the change of sign of the (large) heat-conduction
term d(kdt/dx)/dz, which dominates the (smaller) positive viscous-dissipation
term $udu/dx (Morduchow & Libby 1962). It is therefore of interest to examine
the behaviour of the maximum of the corresponding Boltzmann function
hmax = (H[n)max as a function of the Mach number M,. We find that it has the
same qualitative behaviour as smax = (S/n)max of the Navier-Stokes shock, as
shown in figure 8.

We have now discussed many of the functions that possess maxima within the
shock wave: n' in §3 and ¢, {,, A — S and 4 in the present section. In figure 9 we
compare the positions of the maxima of four of these functions, »', {,, ,, and %, for

s Vs
7-2
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different Mach numbers. We shall discuss the stress 7 and the heat flux g in §6
but also show in this figure the positions of the maxima of 7 and ¢. (The positions
of the maxima for 7, ¢, and ¢, obtained by Bird (1970a) for M; = 8and v = 12are
also included for comparison.)

It is clear that no one position (value of %) within shock waves has a special
significance for all shock properties and all Mach numbers.

5. Profiles of the gradients of shock properties

In this section we shall look at the detailed variations, for each Mach number,
of several shock characteristics as functions of the independent variable n. The
functions are the Boltzmann flux, defined in (22), the temperature ¢ and the
total temperature ¢,. In each case we shall study the n derivatives of the function.

Since we evaluate the Boltzmann collision integrals, the gradient .#;, of a
moment of the velocity distribution with respect to « can be evaluated from the
corresponding moment of the collision integral as follows:

;= [@a-tpavp, (24)

where a —bf = collision integral. It is convenient, in our study, to look at the
gradient with respect to n: At Jin = M} M, (25)
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where A7 = n’ = density gradient = f (a—bf) dv[v,. The gradient of any property
could be obtained from those of its related moments. For example, (12), (13), (17)
and (18) are used to evaluate the gradient of temperature, dt/dn, as follows:

dijdn = §m{l — Mof M1+ 2% — M| M) + M| M M. (26)
According to the Boltzmann theorem for steady flow of a gas
dG/dz < 0 (27)

throughout the gas. Since dn/dx is positive throughout each shock wave (see §3)
the theorem can also be stated in the form

d@/jdn < 0. (28)

One test of the physical validity of our solutions of the Boltzmann equation is
the following question: Do the solutions satisfy the Boltzmann theorem? The
answer, for our solutions, is yes for the complete range of Mach number from 1-1,
where the largest value of d log, G/dn is about 10-5, to a Machnumber of 10, where
this derivative is as large as 0-306. The rather similar Mott-Smith velocity dis-
tribution functions also satisfy the theorem. (This hasnot been shown analytically
but is a result of our numerical calculations.) Agreement with the Boltzmann
theorem is clearly one criterion that any supposed solution of the Boltzmann
equation should satisfy.

The detailed variation of d@/dn with » is conveniently represented in terms of
the reduced quantity dG/d”, which is plotted vs. # for four Mach numbers in
figure 10. Notice that dG/d# is almost independent of M, at the mid-shock posi-
tion for M, greater than about two.

The derivative dt/dn is a function worth studying for several reasons. First,
the Navier—Stokes treatment of the shock wave is based on this function. In
particular, the value of this derivative fixes the quantitative nature of the
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singularities at each boundary of the Navier—Stokes shock. Second, this funec-
tion enters explicitly into the formula for the (effective) Prandtl number which
we shall discuss in §7. We shall therefore compare the values of dt/dn obtained
from the Navier—Stokes and from our own solutions of the Boltzmann equation.

The values of di/d#, the reduced derivative, are plotted vs. # for six Mach
numbers in figure 11. The Navier—Stokes values of the derivative are marked on
the plots at # = 0 and 1 and agree well with the Boltzmann values for low Mach
numbers.

The derivative dt/dn is related to the number density and the derivative of the
total temperature ¢, by the equation

dt/dn = ¢m(M3[n3) +dt,fdn. (29)

Since, as has been discussed by Bagnoff & Nathenson (1970), for example, the
change in total temperature is rather small in a shock wave, we would then
expect dt/dn to be a rather steep function of », varying somewhat like the inverse
cube of =, as is illustrated in figure 11 (a). The values of df,/d% are much smaller
than df/d#, but these small values represent the part of the variation of df/d%
with 7 which is not predictable a priori from the term 47.#3/5n and which can
only be calculated at present from solutions of the nonlinear Boltzmann equation.
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Average probable error = 0-0612, 0-109 and 0-0559 for 7/p,, g and g, respectively.

Note also, for strong shocks, that near the hot side df/dn is much less than either
|dt.[dn| or dt, [dn, i.e. there is a delicate balance between the large positive value
of dt, [dn and the large negative value of dt [dn.

6. Transport properties of shock waves

Three transport properties are basic to our discussion. These properties are 7,
a measure of the total stress (or momentum flux), ¢, a reduced heat flux and g,,
the part of the heat flux associated with the longitudinal random motion of the
molecules. These properties are calculated from the formulae given in §4. As
seen from (11)-(18) 7 and ¢ as functions of number density can be derived
from one non-invariant moment of f, namely .#, (see §4), or from the lateral
temperature t, , together with ¢, and , which are known functions of the invariant
moments and therefore of M, and of n. To calculate ¢, an additional moment
must be known, namely .#,.

We shall look at the variation of the transport properties within a shock wave
for M, = 4. (The position of maximum 7 and maximum g were shown in figure 9.)
Figure 12 shows the variation of the three fluxes 7, ¢ and ¢, for the Boltzmann
and the Mott-Smith shocks. At the upstream and downstream boundaries of
the shock the Monte Carlo values of the three fluxes are consistent with the zero
values expected there. As shown in the figure, the three profiles of the Boltzmann
shock are similar to those of the Mott-Smith shock; however, the differences
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are significant, especially near the upstream boundary. The maximum percentage
differences are 9-8 %, (at 2 = 0-125), 21 %, (at # = 0-25) and 6:59, (at # = 0-1875)
for 7, ¢, and g, respectively.

In fluid dynamics one is interested in the relation between each flux and the
corresponding gradient. In Navier—Stokes fluids the relation is described by the
transport coefficients u and k, defined by

p = 47/(dujdz)], k= g/(dt]dx). (30)
For a gas of elastic spheres the temperature dependence of the coefficients is
given by po=p(tft)Y, k= ky(tft)h. (31)

In the kinetic theory of & non-equilibrium gas, like that in the interior of a shock
wave, it is convenient to use the same definition of transport coefficients but
to normalize them by dividing by # (since we are considering elastic sphere
molecules) and by the upstream value of the coefficient. Thus in our discussion

vl e = (ulp) G, et = ()R (32
For a Chapman—Enskog gas (i.e. for small values of M, — 1) pire; and k) should
be equal to one.

Figure 13 shows the variation of gre in a shock wave for M, = 4. The values of
Jire are larger near the boundaries than in the interior of the shock wave and
therefore depart quite significantly from the values expected for near-equilibrium
flow. (This departure is much larger for ke near the downstream boundary.)
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The ratio g,/q is also of interest. As pointed out by Baganoff & Nathenson
(1970) the Chapman-Enskog approximation yields a constant value of ¢,/g = 0-6.
Baganoff & Nathenson’s (1970) model gives ¢,/g = 15M2/(7+ 18M )%, where
M =local Mach number. Our solutions of the Boltzmann equation give the
results shown in figure 14, which are in good agreement with Baganofi’s model.
Note that even for low Mach numbers the ratio ¢,/q is not a constant as predicted
by Chapman—Enskog approximation, but is a function of the local Mach number.
We have found that the Mott-Smith values of ¢,/¢ do not correlate too well with
the local Mach number and are much lower than Baganoff & Nathenson’s
curve for strong shocks.

7. Comparison with Navier—Stokes shock at a low Mach number
(M, =1-2)

In § 3 we found that the Boltzmann results for 7}, are smaller than the Navier—
Stokes values for low Mach numbers. In order to make a more complete com-
parison with the Navier—Stokes shock we shall look at four additional properties
in detail for M; = 1-2: the density gradient dn/dz, the profile of temperature
t vs. density n, the Prandtl number Pr as a function of », and the viscosity co-
efficient 4 as a function of n. (We define Pr = %(c,u/k).)

The relevance to the weak shocks of the four properties mentioned above
may be seen by reviewing here how the Navier—Stokes shock solution is usually
obtained. The first step is to obtain the integral curve for constant Pr, yielding
either the t—n or the t-v profile. As indicated in § 4, several properties including
temperature are functions of

My = |3 fdv;
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therefore the t—n relation also determines many other shock properties as func-
tions of the density n. The second step is to obtain the density profile, the
density » ws. the distance x, by using a viscosity—temperature (u—f) relation
consistent with the collision law of a gas. We see, therefore, that a Navier-Stokes
shock is completely determined by four functions: #(n), Pr(n), u(n) and n(x).

In our study of the Boltzmann and Navier—Stokes shock for M, = 1-2 we
need (i) to look at the difference in dr/dx for the two shocks, (ii) to compare the
dt/dn profiles, (iii) to examine the variation of Pr in the Boltzmann shock and
(iv) to see if the viscosity coefficient in the Boltzmann shock is proportional to
the square root of temperature, a relation derived from the linearized theory for
elastic-sphere gases.

Figure 15 shows the variation of reduced density gradient dn/dx vs. reduced
density #. For #% > 0-2, the Boltzmann values of dn/dx are significantly lower
than the Navier—Stokes results. The value of 7, for M, = 1-2 shown in figure 3(a)
is proportional to the maximum value of dn/dx in this figure.

The results for the reduced temperature gradient df/d7 are compared in
figure 16, which shows good agreement for the two shocks. This agreement implies
good agreement also for the variation of the properties such as ¢, ¢,, 7 and ¢
(which are functions of .#,) as functions of the density n. Figure 17 shows the
variation of Pr vs. # in the Boltzmann shock. The significant variation of Pr,
except near the cold and hot sides, is less than 109,. Since the Navier—Stokes
dt[dn was obtained on the basis of constant Pr of § (equivalent to ¢ u/k = %), the
Prandtl numbers within the Boltzmann shocks are also in accord with that of
the Navier—Stokes shock.

The ratio prer = (/p4)/(¢/t,)? is equal to one for a gas of elastic spheres. We
have studied this ratio for one shock (M, = 4, see §6). The variation of this
ratio for an M, = 1-2 shock is given in figure 18. We note that this ratio is
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definitely greater than unity on the downstream half of the shock, with a maxi-
mum departure of 409%,. The fact that the ratio sire1 is greater than one for the
Boltzmann shock is in accord with the fact that the Boltzmann values of dn/dx
and 7, are smaller than the Navier-Stokes values for M, = 1-2 and other low
Mach numbers.
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8. The velocity distribution function

In the previous sections we have discussed the dependence on Mach number
and shock position of many moments of f, of the velocity distribution function,
and of other functions derived from f. In this section we shall describe the
behaviour of f as a function of position in velocity space for one Mach number
(M, = 4) and at several positions in the shock.

The qualitative nature of the distribution function was monitored by a com-
puter graphical display system. The layout of the velocity space for the display
of our velocity-dependent functions and a representative distribution function f
at the mid-shock position (7 = 1) for M; = 4 are shown in figure 19 (plate 1).
We observe the bimodal characteristics of the distribution function.

In making quantitative studies of f it is convenient to compare with the Mott-
Smith values. Let us define 8fsr = Fa—Torss (33)

each term in the equation, of course, being calculated for the same value of v
and 7, and for the same Mach number (f; and f,,g being Boltzmann and Mott-
Smith values respectively).

The nature of the variation of Jf,; across velocity space for the mid-shock
position (% = %) is such that there are regions in which df;, is positive and other
regions in which &f,, is negative. These regions are well defined at all positions
within the shock but their shape and size vary with position. These facts suggest
that the errors of the Mott-Smith function for this Mach number are indeed
significant in the shock.

This opinion is confirmed when we look at values of df,, for individual bins
in comparison with the estimates we have made of €y, f for the same bins. We
find that, for about 40 9, of the bins, at most shock positions df,, is greater than
8¢y [, that is, the df,, values as large as those observed for these bins would occur
by chance only once in 100 or more trials. Near the cold boundary these highly
significant values of f occur only for about 209, of the bins, so that here the
Mott-Smith Ansatz gives fewer large deviations from the solution of the Boltz-
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mann equation than elsewhere.t Nevertheless, the largest individual deviations
also occur near the cold side of the shock.

The r.m.s. values of df;; and €, f are each approximately constant across the
shock. The r.m.s. value of df;, for all stations (1-34 x 10~2) is 1-7 times larger
than the average values of €,f (0-79 x 10~2) and is 6-3 times smaller than the
r.m.s. value of f throughout the shock.

A qualitative summary of the characteristics of the Boltzmann f(v, ) would
be useful in guiding the future development of analytical or analytical-numerical
methods of describing the properties of shock waves. To do this we shall again
use 8fyr, the departure of f from the corresponding Mott-Smith function, because
the fractional deviation 8fy/f is generally small, though it may be large in a
few local regions in velocity space and in the shock. What are the qualitative
properties of 8f;; obtained from our solution of the Boltzmann equation?

(i) &fw = O at the upstream and downstream boundaries of the shocks.

(i) on = f Ofyrdv must be 0 because the values of f5 and f,5 in (33) are cal-
culated for the same value of n. Therefore, df,; must have both positive and
negative values for each position in the shock.

(iii) The three conserved moments of 8f,, like those of f and of f,,5, must be
constant across the shock.

(iv) 8f; cannot be represented as a product of a function of » and a function
of v because the shape of the isolines of &f,, changes with =, i.e., with position
in the shock.

(v) In particular, 8f;, is not simply proportional to %#(1 —7), because analysis
of three of the non-conserved moments of f show that it cannot be represented
by quadratic functions of n.

Bird (1970a) has studied computer display representation of the distribution
function for M, = 8 and has also found that the general behaviour gives quali-
tative support of the bimodal assumption of Mott-Smith but is not in agreement
with the Mott-Smith solution in detail.

Muntz & Harnett (1970) have recently made two experimental measurements
of certain distribution functions for M; = 1-59:

Fv,) = j fdv,dv, and F(v,)= f fdv, dv,.

They found that F(v,) deviated significantly from that of the corresponding
Chapman—Enskog first iterate. In order to find whether similar deviations exist
between our Boltzmann results and those of Chapman—Enskog first iterate, we
have made a similar comparison for M; = 1-59 for elastic spheres. The results
for the half width of F(v,) are in excellent agreement with their findings (Holtz,
Muntz & Yen 1971).

We should like to point out that Muntz & Harnett’s results are for helium
with a different collision cross-section from that of the elastic spheres we consider.
We have computed the Chapman—Enskog half width for helium (with g ~ 19647)
for M, = 1-59 and have found no discernible difference, when the results are

+ Essentially the same result was found earlier for the M, = 2-5 shock (Hicks & Smith
1967).
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FicurE 20. Isolines of the function v, (@ —bf) at the mid-shock position (# = §) for M, = 4.
v, (a— bf) is the function caleulated directly by Nordsieck’s Monte Carlo method. Numerical
values of v,(a—bf) in arbitrary units: 4, 8000; B, 5000; C, 3500; D, 2000; E, 800; F, 350;
@, 150; H, 80.

plotted ws. %, with that of the elastic spheres. We believe, therefore, that the
effect of using the actual helium cross-section on the Monte Carlo result is,
for this Mach number, probably also small. However, we are planning to in-
corporate in our computer program other differential collision cross-sections than
that of the elastic spheres and to study their effects.

Bird computed F(v,) and F(v,) for the shock of M, = 10 (Bird 1967).

9. The Boltzmann collision integral (M, = 4)

As pointed out in the introduction, it is Nordsieck’s method of evaluation of
the (nonlinear) Boltzmann collision integral that has made possible the solution
of the Boltzmann equation for strong shock waves and other far-from-equilibrium
situations. Since the nature of the Boltzmann collision integral, as calculated by
Nordsieck’s Monte Carlo method from a solution of the Boltzmann equation for
the shock wave as well as the heat-transfer problems, and the comparison with
the approximations to it associated with the names of Mott-Smith and Krook
are discussed in detail in a separate paper (Hicks & Yen 1971), we shall describe
here briefly only some of its important characteristics for M; = 4 and % = £.

In figure 20 are shown the isolines of the functions »,(a—bf) (the function
calculated directly by our numerical solution of the Boltzmann equation) at
the mid-shock position (% = §) for M, = 4. The negative values of the function
for large positive v,, correspond to (a—bf)fv, = dffdx < 0 and to the scattering
loss of molecules with high forward velocity, like those characteristic of the cold
side of the shock. The negative values for v, < 0 (molecules moving in the up-
stream direction) correspond to dffdx > 0. The collision integral should vanish
on the line v, = 0 if df/dz is to be finite there. This requirement is a strong test
of the reliability of numerical solutions of the Boltzmann equation or of approxi-
mations like those of Mott-Smith and Krook. Except in the case of a few velocity
bins the values of (@ — bf) obtained by Monte Carlo solution of the Boltzmann equation
satisfy this criterion well.
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Fieure 19. Display of distribution function f at mid-shock position (n = %) for M; = 4.
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